China Good quality Oxygen Gas Cylinder Filling 12nm3 Oil-Free Piston Compressor air compressor lowes

Product Description

Product Description

Oil-inject Piston Air Compressor with air tank

Portable industrial silent oil injection piston air compressor 
Technical parameters for W-0.67/8 Industry Piston Compressor

No. Item Specification
1 Compressor Model W-1.0/10
2 Compress  medium air gas 
3 Structure W Type, Air Cooling, Lubrication type Piston Air Compressor
4 Compress stage number three stage
5 volume capacity (F.A.D)   1.0 m3/min
6 Working pressure   10bar
7 Ambient temperature  ≤-10~+40ºC
8 Discharge temperature ≤ambient temp + 15ºC
9 Compressor speed(r/min) 740rpm
10 Motor Power  15KW ,Three phase asynchronous motor
11 Cooling method Air Cooling
12 Lubricate method oil-injection lubrication
13 Driven Method Belt driven with belt guard
14 Noise    85dB (A)
15 Dimension about 1220×580×980mm (L*W*H)
16 Weight about 280KG

    

>>>Features of air compressor

1) Well-designed specifically for small and medium-sized users;

2) The operation is simple, convenient, and less prone to failure;

3) Designed for filling the air available for breathing;

4) Guarantee inflatable gas pure health, no the oil tasteless displacement, high-pressure air filling quickly;

5) Practices can be achieved without power, and to facilitate the fieldwork;

6) Small size, lightweight, easy to move quickly;

7) Cost-effective, economical and practical.

 

>>Application of air compressor

1) Filling station can be used for fire brigade divers base inflatable station,

2) mine, oil field chemicals, ship, climbing, water sports center industry for human rescue,

3) fire fighting, rescue, underwater operations breathing gas filling is ideal in rescue equipment.

Product Parameters

>>>Specifications of Piston Air Compressor

Air Compressor Pump 
1. Air capacity: 6.5- 40.7c.f.m/min 
2. working pressure: 8bar / 10bar / 12.5bar 
3. Power:1.1-7.5kw 

Model Generator Cylinder F.A.D  Working Tank volume
Air delivery pressure
  KW HP Bore and cylinder no.(mm) M3/min Mpa L
V-0.2/12.5 2.2 3 65×1/51×1 0.2 12.5 65
W-0.6/12.5 4 5.5 80×2/65×1 0.6 12.5 80
V-0.42/12.5 4 5.5 105×1/55×1 0.42 12.5 80
V-0.53/12.5 4 5.5 105×1/55×1 0.53 12.5 80
W-0.67/10 5.5 7.5 105×1/55×1 0.6 10 80
W-0.8/14.5 7.5 10 90×2/65×1 0.8 14.5 120
W-0.9/12.5 7.5 10 90×2/65×1 0.9 12.5 120
V-1.05/10 7.5 10 105×2/55×2 1.05 10 160
V-0.8/12.5 7.5 10 105×2/55×2 0.8 12.5 120
V-1.05/10 7.5 10 105×2/55×2 1.05 10 160
V-0.8/12.5 7.5 10 105×2/55×2 0.8 12.5 160
V-1.05/10 7.5 10 105×2/55×2 1.05 10 500
V-0.9/14.5-K 7.5 10 120×2/63.5×2 0.9 14.5 160
V-1.2/10-K 7.5 10 120×2/63.5×2 1.2 10 160
V-1.2/10-K 7.5 10 120×2/63.5×2 1.2 10 300
V-1.05/12.5-K 7.5 10 120×2/63.5×2 1.05 12.5 300
V-1.05/12.5-K 7.5 10 120×2/63.5×2 1.05 12.5 330
Z-1.6/10 11 15 155×1/85×1 1.6 10 330
W-1.6/12.5 11 15 105×2/75×1 1.6 12.5 330
W-2.0/10 15 20 120×2/82×1 2 10 330
W-2.4/14.5 18.2 25 140×2/90×1 2.4 14.5 330

Packaging & Shipping

 1. Professional exporting wooden packing.

30 Bar 2m3/min Air Cooling Stage Piston Air Compressor for Piping Pressure Test
 

Description of air compressor 

1) The air compressor carefully designed and manufactured for filling 20MPa-30MPa pressure air cylinders.

2) This is a kind of high-pressure air inflatable equipment available for breathing air. The device has a small size, light weight, easy maintenance, and friendly at moving and operation.

3) Output air non-toxic, odorless. Suitable for filling high pressure air displacement and small and medium-sized gas station

Technical Parameter for PET Oil-free Piston Air Compressor

 Model

Air Delivery

Working Pressure

Compressed Stages

Motor power

Speed

Dimension (L*W*H)

Weight

 

m3/min

bar

 

kw

rpm

mm

Kg

VW-2.0/30

2.0

3.0

3

22

620

2178*1060*1060

690

WW-4.0/30

4.0

2*22

3718*1108*1208

1380

WW-6.0/30

6.0

2*22

2168*1058*2008

1380

WW-8.0/30

8.0

3*22

5608*1108*1208

2070

VW-2.0/40

2.0

4.0

22

2178*1060*1060

690

WW-4.0/40

4.0

2*22

3718*1108*1208

1380

WW-6.0/40

6.0

2*22

2168*1058*2008

1380

WW-8.0/40

6.0

3*22

5608*1108*1208

2070

*Structure by into trachea-shaped valve and exhaust valve combinations, the main features below :air through the intake manifold valve cavity, along the tangent of the valve flow, impact of approximate straight lines, air valves and flow resistance greatly reduces, so it could provide low noise, long service life.

*Because of the inlet valve inside the vertical spatial distribution, inlet of the valve flow area increased, the valve flow rate and lower drag coefficient, inspiratory volume increase volume efficiency, reduced energy consumption.

*Intake and exhaust valves is the reed valve and strip-type valves fixed unlimited free elastic beam opening and closing movements, without friction and clearance volume small so CHINAMFG combined air valve has excellent dynamic performance and reliability.


Diesel engine-driven Air Compressor


Air Cooling 40bar Oil-Free PET Bottle blowing Piston Air Compressor with skid mounted air dryer and air tank

Especially suitable for: water and electricity, PET bottle blowing, leak detection, m ilitary and other fields

1. Valve materials are made of Sweden stainless steel band.

2. In order to ensure that air compressors highly reliable, using redundant design principles, setting multiple protection measures: unloading, down the drain, exhaust, ensure that the zero-pressure start.

3. Timed drain valve: Drainage and drainage at a time interval can be adjusted. Ensure that the captain of an air compressor runs continuously between regular drainage, effectively preventing water from too much liquid strike accidents.

4. Low exhaust temperature(10.0Mpa exhaust pressure, exhaust air temperature ≤170 degrees, the temperature of exhaust air is above the ambient temperature of 15-20 ºC from aftercooler )

5. Fuel consumption per hour less than 0.143/kw.

6. High reliability and long maintenance period, very low fuel, low energy consumption and so on, greatly reducing the overall general operating costs.

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1year
Warranty: 1year
Lubrication Style: Oil-free
Cooling System: Air Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Vertical
Samples:
US$ 480/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

How Do Gas Air Compressors Compare to Diesel Air Compressors?

When comparing gas air compressors to diesel air compressors, there are several factors to consider, including fuel efficiency, power output, cost, maintenance requirements, and environmental impact. Here’s a detailed explanation of how these two types of air compressors compare:

1. Fuel Efficiency:

Diesel air compressors are generally more fuel-efficient compared to gas air compressors. Diesel engines have higher energy density and better overall efficiency than gasoline engines. This means that diesel compressors can produce more work output per unit of fuel consumed, resulting in lower fuel costs and longer runtimes between refueling.

2. Power Output:

Diesel air compressors typically provide higher power output compared to gas air compressors. Diesel engines are known for their robustness and ability to generate higher torque, making them suitable for heavy-duty applications that require a larger volume of compressed air or higher operating pressures.

3. Cost:

In terms of upfront cost, gas air compressors are generally more affordable compared to diesel air compressors. Gasoline engines and components are typically less expensive than their diesel counterparts. However, it’s important to consider long-term costs, including fuel expenses and maintenance, which can vary depending on factors such as fuel prices and usage patterns.

4. Maintenance Requirements:

Diesel air compressors often require more regular maintenance compared to gas air compressors. This is because diesel engines have additional components such as fuel filters, water separators, and injector systems that need periodic servicing. Gas air compressors, on the other hand, may have simpler maintenance requirements, resulting in reduced maintenance costs and time.

5. Environmental Impact:

When it comes to environmental impact, diesel air compressors produce higher emissions compared to gas air compressors. Diesel engines emit more particulate matter, nitrogen oxides (NOx), and carbon dioxide (CO2) compared to gasoline engines. Gas air compressors, especially those powered by propane, tend to have lower emissions and are considered more environmentally friendly.

6. Portability and Mobility:

Gas air compressors are generally more portable and easier to move compared to diesel air compressors. Gasoline engines are typically lighter and more compact, making gas air compressors suitable for applications where mobility is essential, such as construction sites or remote locations.

It’s important to note that the specific requirements of the application and the availability of fuel sources also play a significant role in choosing between gas air compressors and diesel air compressors. Each type has its own advantages and considerations, and the choice should be based on factors such as the intended usage, operating conditions, budget, and environmental considerations.

In conclusion, gas air compressors are often more affordable, portable, and suitable for lighter applications, while diesel air compressors offer higher power output, fuel efficiency, and durability for heavy-duty operations. Consider the specific needs and factors mentioned above to determine the most appropriate choice for your particular application.

air compressor

What Is the Role of Air Receivers in Gas Air Compressor Systems?

Air receivers play a crucial role in gas air compressor systems by serving as storage tanks for compressed air. Here’s a detailed explanation:

1. Storage and Stabilization:

The primary function of an air receiver is to store compressed air generated by the gas air compressor. As the compressor produces compressed air, the air receiver collects and stores it. This storage capacity helps meet fluctuating demand in compressed air usage, providing a buffer between the compressor and the system’s air consumption.

By storing compressed air, the air receiver helps stabilize the supply to the system, reducing pressure fluctuations and ensuring a consistent and reliable flow of compressed air. This is particularly important in applications where the demand for compressed air may vary or experience peaks and valleys.

2. Pressure Regulation:

Another role of the air receiver is to assist in pressure regulation within the gas air compressor system. As compressed air enters the receiver, the pressure inside increases. When the pressure reaches a predetermined upper limit, typically set by a pressure switch or regulator, the compressor stops supplying air, and the excess air is stored in the receiver.

Conversely, when the pressure in the system drops below a certain lower limit, the pressure switch or regulator signals the compressor to start, replenishing the compressed air in the receiver and maintaining the desired pressure level. This cycling of the compressor based on pressure levels helps regulate and control the overall system pressure.

3. Condensate Separation:

During the compression process, moisture or condensate can form in the compressed air due to the cooling effect. The air receiver acts as a reservoir that allows the condensate to settle at the bottom, away from the outlet. The receiver often includes a drain valve at the bottom to facilitate the removal of accumulated condensate, preventing it from reaching downstream equipment and causing potential damage or performance issues.

4. Energy Efficiency:

Air receivers contribute to energy efficiency in gas air compressor systems. They help optimize the operation of the compressor by reducing the occurrence of short-cycling, which refers to frequent on-off cycling of the compressor due to rapid pressure changes. Short-cycling can cause excessive wear on the compressor and reduce its overall efficiency.

The presence of an air receiver allows the compressor to operate in longer and more efficient cycles. The compressor runs until the receiver reaches the upper pressure limit, ensuring a more stable and energy-efficient operation.

5. Air Quality Improvement:

Depending on the design, air receivers can also aid in improving air quality in the compressed air system. They provide a space for the compressed air to cool down, allowing moisture and some contaminants to condense and separate from the air. This can be further enhanced with the use of additional filtration and drying equipment installed downstream of the receiver.

In summary, air receivers play a vital role in gas air compressor systems by providing storage capacity, stabilizing compressed air supply, regulating system pressure, separating condensate, improving energy efficiency, and contributing to air quality control. They are an integral component in ensuring the reliable and efficient operation of compressed air systems across various industries and applications.

air compressor

How Does a Gas Air Compressor Work?

A gas air compressor works by utilizing a gas engine to power a compressor pump, which draws in air and compresses it to a higher pressure. The compressed air can then be used for various applications. Here’s a detailed explanation of how a gas air compressor operates:

1. Gas Engine:

A gas air compressor is equipped with a gas engine as its power source. The gas engine is typically fueled by gasoline, diesel, natural gas, or propane. When the engine is started, the fuel is combusted within the engine’s cylinders, generating mechanical energy in the form of rotational motion.

2. Compressor Pump:

The gas engine drives the compressor pump through a mechanical linkage, such as a belt or direct coupling. The compressor pump is responsible for drawing in atmospheric air and compressing it to a higher pressure. There are different types of compressor pumps used in gas air compressors, including reciprocating, rotary screw, or centrifugal, each with its own operating principles.

3. Intake Stroke:

In a reciprocating compressor pump, the intake stroke begins when the piston moves downward within the cylinder. This creates a vacuum, causing the inlet valve to open and atmospheric air to be drawn into the cylinder. In rotary screw or centrifugal compressors, air is continuously drawn in through the intake port as the compressor operates.

4. Compression Stroke:

During the compression stroke in a reciprocating compressor, the piston moves upward, reducing the volume within the cylinder. This compression action causes the air to be compressed and its pressure to increase. In rotary screw compressors, two interlocking screws rotate, trapping and compressing the air between them. In centrifugal compressors, air is accelerated and compressed by high-speed rotating impellers.

5. Discharge Stroke:

Once the air is compressed, the discharge stroke begins in reciprocating compressors. The piston moves upward, further reducing the volume and forcing the compressed air out of the cylinder through the discharge valve. In rotary screw compressors, the compressed air is discharged through an outlet port as the interlocking screws continue to rotate. In centrifugal compressors, the high-pressure air is discharged from the impeller into the surrounding volute casing.

6. Pressure Regulation:

Gas air compressors often include pressure regulation mechanisms to control the output pressure of the compressed air. This can be achieved through pressure switches, regulators, or control systems that adjust the compressor’s operation based on the desired pressure setting. These mechanisms help maintain a consistent and controlled supply of compressed air for the specific application requirements.

7. Storage and Application:

The compressed air produced by the gas air compressor is typically stored in a receiver tank or used directly for applications. The receiver tank helps stabilize the pressure and provides a reservoir of compressed air for immediate use. From the receiver tank, the compressed air can be distributed through pipelines to pneumatic tools, machinery, or other devices that require the compressed air for operation.

Overall, a gas air compressor operates by using a gas engine to power a compressor pump, which draws in air and compresses it to a higher pressure. The compressed air is then regulated and used for various applications, providing a reliable source of power for pneumatic tools, machinery, and other equipment.

China Good quality Oxygen Gas Cylinder Filling 12nm3 Oil-Free Piston Compressor   air compressor lowesChina Good quality Oxygen Gas Cylinder Filling 12nm3 Oil-Free Piston Compressor   air compressor lowes
editor by CX 2024-05-09

Biogas compressor

As one of the biogas compressor manufacturers, suppliers, and exporters of mechanical products, We offer biogas compressor and many other products.

Please get in touch with us for details.

Manufacturer supplier exporter of biogas compressor.

Recent Posts